

| Semester M.Sc. Degree Examination, February 2019 (CBCS Scheme) | C-101 : CHEMISTRY | Inorganic Chemistry - I

Time: 3 Hours Max. Marks: 70

Instruction : Answer Question No. 1 and any five of the remaining.

1. Answer any ten of the following :

(10×2=20)

- a) What is a synergic effect and how does it correlate to metal-carbonyl bonding?
- b) Write the Kapustinskii's equation and give its significance.
- c) FeCl, is soluble in ether while AlCl, is not. Give reasons.
- d) What are pyroxenes and amphiboles ? Give an example for each.
- e) In what way N2O2 autoionize? How do NOCI and NaNO3 act in it?
- f) How is cloro-carborane C₂B₁₀H₁₂ obtained ? Draw its possible isomers.
- g) Give the meaning of symbiosis with an example.
- h) Distinguish between isopoly and heteropoly acids. Give an example for each,
- Acetic acid has a different leveling effect upon strong acids. Justify the statement.
- Give the meaning of the terms: mass defect and binding energy.
- k) Draw the structures of carbonyl clusters Co₄(CO)₁₂ and Fe₅(CO)C.
- The activity of sample of \$5 reduced to 25% of its initial value after 180 days. Find the half-life of the isotope.
- a) Explain why the bond angle in H₂O is 104.5°, whereas the same angle in H₃S is only 92.1°.
 - b) What are the postulates of VSEPR model ? Based on it, explain the structures of IF, XeF, CIF, and F. (4+6=10)

P.T.O.

- a) How are S₄N₄ and S₂N₂ prepared ? Explain the structure and bonding in S₄N₄ ?
 - b) Write briefly on the use of ZSM-5 in the conversion of methanol to gasoline.
 - c) Outline the preparation, structure and bonding in P₃N₃Cl₆. (3+3+4=10)
- a) Give the meaning of the term CD and explain its utility in determining the absolute configuration of metal complexes.
 - b) Discuss the Pearson's concept of hard and soft acids and bases. Based on it, will Mg² react more strongly with CO₃ or S²? (4+6=10)
- 5. a) Give a comprehensive note on Auger effect.
 - b) Draw the nuclear binding energy curve and explain its significance.
 - c) Write briefly on the structures and bonding in a dinuclear [Re₂Cl₂]²⁻. (3+3+4=10)
- a) State Bent's rule. Rationalize the bond angles in CH₂F₂ (HCH = 111.9° and FCF = 108.3°).
 - b) Calculate the styx code and draw the structures of the following boranes :

 B₂H₆, B₅H₉ and B₁₀H₁₀
 - c) Discuss the applications of heteropoly acids of W and M_o. (3+3+4=10)
- 7. a) Distinguish between transient and secular equlibria.
 - b) Write briefly on magnetic circular dichrolsm.
 - c) How are silicates classified ? Explain the structural features of beryl and muscovite mica silicates. (3+3+4=10)
- 8. a) Distinguish between fluorite and anti fluorite structure.
 - b) Write the chemical reactions involved in a non-aqueous solvent BrF3.
 - c) Draw and explain MO energy level diagram for NO₂ involving delocalized π-bonding.
 (3+3+4=10)